Alterations of phospholamban function can exhibit cardiotoxic effects independent of excessive sarcoplasmic reticulum Ca2+-ATPase inhibition.
نویسندگان
چکیده
BACKGROUND Low activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) resulting from strong inhibition by phospholamban (PLN) can depress cardiac contractility and lead to dilated cardiomyopathy and heart failure. Here, we investigated whether PLN exhibits cardiotoxic effects via mechanisms other than chronic inhibition of SERCA2a by studying a PLN mutant, PLN(R9C), that triggers cardiac failure in humans and mice. METHODS AND RESULTS Because PLN(R9C) inhibits SERCA2a mainly by preventing deactivation of wild-type PLN, SERCA2a activity could be increased stepwise by generating mice that carry a PLN(R9C) transgene and 2, 1, or 0 endogenous PLN alleles (PLN(+/+)+TgPLN(R9C), PLN(+/-)+TgPLN(R9C), and PLN(-/-)+TgPLN(R9C), respectively). PLN(-/-) +TgPLN(R9C) hearts demonstrated accelerated sarcoplasmic reticulum Ca(2+) uptake rates and improved hemodynamics compared with PLN(+/+)+TgPLN(R9C) mice but still responded poorly to beta-adrenergic stimulation because PLN(R9C) impairs protein kinase A-mediated phosphorylation of both wild-type and mutant PLN. PLN(+/+)+TgPLN(R9C) mice died of heart failure at 21+/-6 weeks, whereas heterozygous PLN(+/-)+TgPLN(R9C) mice survived to 48+/-11 weeks, PLN(-/-)+TgPLN(R9C) mice to 66+/-19 weeks, and wild-type mice to 94+/-27 weeks (P<0.001). Although Ca(2+) reuptake kinetics in young PLN(-/-)+TgPLN(R9C) mice exceeded those measured in wild-type control animals, this parameter alone was not sufficient to prevent the eventual development of dilated cardiomyopathy. CONCLUSIONS The data demonstrate an association between the dose-dependent inhibition of SERCA2a activity by PLN(wt) and the time of onset of heart failure and show that a weak inhibitor of SERCA2a, PLN(R9C), which is diminished in its ability to modify the level of SERCA2a activity, leads to heart failure despite fast sarcoplasmic reticulum Ca(2+) reuptake.
منابع مشابه
Alterations of Phospholamban Function Can Exhibit Cardiotoxic Effects Independent of Excessive Sarcoplasmic Reticulum Ca -ATPase Inhibition
studying a PLN mutant, PLN, that triggers cardiac failure in humans and mice. Methods and Results—Because PLN inhibits SERCA2a mainly by preventing deactivation of wild-type PLN, SERCA2a activity could be increased stepwise by generating mice that carry a PLN transgene and 2, 1, or 0 endogenous PLN alleles (PLN / TgPLN, PLN / TgPLN, and PLN / TgPLN, respectively). PLN / TgPLN hearts demonstrate...
متن کاملThyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation.
The aim of the present study was to determine the changes in phospholamban protein levels and their regulatory effect on sarcoplasmic reticulum (SR) Ca2+ uptake and left ventricular function in hypothyroid and hyperthyroid rat hearts. Hypothyroidism was associated with decreases in basal left ventricular function (+dP/dt and -dP/dt), whereas in hyperthyroidism these parameters were elevated com...
متن کاملFunctional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles.
The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR ve...
متن کاملThyroid hormone-induced alterations in phospholamban-deficient mouse hearts.
Alterations in the expression levels of the sarcoplasmic reticulum (SR) Ca2+-ATPase and its regulator, phospholamban, have been implicated in the effects of thyroxine hormone on cardiac function. To determine the role of phospholamban in these effects, hypothyroidism and hyperthyroidism were induced in phospholamban-deficient mice and their isogenic wild types. Hypothyroidism resulted in signif...
متن کاملMolecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.
The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 119 3 شماره
صفحات -
تاریخ انتشار 2009